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Allylindium reagents have been used extensively for the intro-
duction of allyl group in a Barbier type manner.1–3 Although allyl-
indium reagents can be added to many reactive functional groups
including aldehyde, ketone, and activated imine with acyl or tosyl
group,1,2 the reaction with nitrile has not been reported except for
the recent Yamamoto’s paper.3 According to the results, introduc-
tion of allylindium can be carried out with only nitrile compounds
having both an a-hydrogen atom and an a-EWG group
(Scheme 1).3

Recently Baylis–Hillman adducts have been used for the syn-
thesis of various cyclic compounds.4,5 Among them, many of the
interesting cyclic compounds were synthesized from the suitably
modified Baylis–Hillman adducts with active methylene com-
pounds like ethyl cyanoacetate, dimethyl malonate, and ethyl ace-
toacetate.5 Based on the Yamamoto’s results,3 we reasoned that we
could prepare the allylated pyridine derivative (III) by the double
bond isomerization of compound 4a, which could be prepared
from the Baylis–Hillman acetate 1a as in Scheme 2.5a However,
we obtained diallyl compound 5a as the major product presumably
via the second introduction of allyl group to the reactive cyclic
N-acylimine intermediate (II), the tautomer of 4a. This type of con-
secutive double allylation reaction has not been reported to the
best of our knowledge.

Encouraged by the results, we examined the generality of this
successive In-mediated Barbier type allylation with c-cyanoesters
3a–d. The starting materials 3 were prepared by the reaction of
Baylis–Hillman acetates (1a–c)/bromide (1d) and active methylene
ll rights reserved.
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compounds 2a–c in the presence of K2CO3.5 With these com-
pounds, we examined the Barbier reaction with in situ generated
allylindium reagent from allyl bromide and indium powder in
THF. Mono-allylated compounds 4a–d were isolated in low yields
(12–16%). Instead diallylated d-valerolactam derivatives 5a–d
were obtained as the major products (52–61%).6,7 The results are
summarized in Table 1.

Diallylated compound 5 must be formed by double Barbier
reaction via the cyclic N-acylimine intermediate (II), a tautomer
of minor product 4. As reported, N-acylimine is more reactive than
nitrile toward allylindium species,1,2 thus the second allylation oc-
curs to a larger extent to give 5 as the major product. Trials for the
synthesis of mono-allylated compound as the major product failed.
As next entries, we examined the synthesis of diallylated c-butyro-
lactam derivatives via the double-Barbier reaction with 6a and 6b
(Scheme 3).6 The starting materials were synthesized from Baylis–
Hillman acetates 1c and 1e with KCN in good yields.5d The follow-
ing In-mediated allylation reaction provided diallylated com-
pounds 7a and 7b in reasonable yields. In these cases we did not
observe the formation of appreciable amounts of mono-allylated
compounds. The reaction of 6a with crotyl bromide under the same
conditions was very sluggish, unfortunately. Dicrotyl c-butyrolac-
tam 7c was obtained in low yield (10%) after 30 h and we recov-
EWG NH2EWGTHF

Scheme 1.



Table 1
Synthesis of diallylated lactam 5a–d

Entry Substrate Conditions Compound 3 (%) Productsa (%)

1

Ph
COOEt

OAc

1a

p-ClPh
COOEt

OAc

1b

Ph
COOMe

OAc

1c

C5H11
COOEt

1d Br

NCCH2COOMe (2a), K2CO3 (1.5 equiv), CH3CN, rt, 2 h
Ph

COOEt

COOMe

CN

3a (68)

p-ClPh
COOEt

Ph

CN

3b (61)

Ph
COOMe

SO2Ph

CN

3c (75)

C5H11
COOEt

COOMe

CN

3d (77)

NHPh

COOMe

O

4a (16)

NHp-ClPh

Ph

O

4b (13)

NHPh

SO2Ph

O

4c (12)

NHC5H11

COOMe

O

4d (15)

NHPh

COOMe

O

5a (58)

NHp-ClPh

Ph

O

5b (54)

NHPh

SO2Ph

O

5c (52)

NHC5H11

COOMe

O

5d (61)

2 NCCH2Ph (2b), K2CO3 (1.5 equiv), CH3CN, rt, 3 h

3 NCCH2SO2Ph (2c), K2CO3 (1.5 equiv), CH3CN, rt, 2 h

4 2a, K2CO3 (1.5 equiv), CH3CN, rt, 2 h

a Conditions: compound 3 (1.0 equiv), allyl bromide (4.0 equiv), In (2.0 equiv), THF, reflux, 30 min.
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(I)
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ered 6a (61%). The compound 8 showed no reaction under the
same conditions as expected due to the lack of a-hydrogen atom
around nitrile group (Scheme 4).3

As one of the synthetic applications of diallylated d-valerolac-
tam derivatives, we examined the RCM (ring-closing metathesis)
reaction of compound 5a with 2nd generation Grubbs catalyst
(3 mol %) in toluene (50 �C, 10 h) and obtained the corresponding
spiro-cyclopentene compound 9 in 84% yield (Scheme 5).8

In summary, we disclosed an efficient synthesis of diallylated d-
valerolactam and c-butyrolactam derivatives via an indium-medi-
ated successive double Barbier type allylations. Further synthetic
applications of this interesting double allylation concept are under
study.
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